

導諦

資訊科學與電腦發展

- 1-1 認識資訊科學
- 1-2 電腦發展的歷史

電腦基本原理

- 2-1 數位化概念
- 2-2 資料的數位化
- ※2-3 基本數位邏輯處理

☑同場加映

- 資訊新趨勢-巨量資料(Big Data)
- 內碼、外碼、交換碼
- 類比訊號 vs. 數位訊號
- 影像色彩的類型
- 常見的檔案格式

資訊科學與電腦發展

(1) 訊科學的發展日新月異,每一項發展都對人類的生活產生巨大的影響。你是 否注意到,當我們還在摸索新的資訊科技應用時,更新、更酷的科技發明已 悄悄問世了呢?

1-1 認識資訊科學

資訊科學的研究與發展將人類社會由「工業時代」推向「資訊時代」,它是一門研究電腦硬體架構、軟體設計與應用,以及資料運算與儲存技術的科學。本節將介紹資訊科學的本質及其重要研究領域,並說明資訊科學素養對現代公民的重要性。

1-1.1 資訊科學的本質

人類早在二十世紀之前,就已發明了許多協助計算的設備,例如用來執行算術運算 及處理數學問題的差分機、用來協助人口普查的機器、以及用來計算炮彈飛行路徑的 ENIAC電腦等,這些機器與設備都是為了協助人類處理龐大的計算而設計出來的。

隨著電腦科技的發展,許多科學家投入資訊科學領域的研究,希望研發出計算速度更快、功能更強的電腦系統,以處理各式各樣的問題,例如基因研究、行星軌道計算、氣候預測、金融投資分析等。因此在資訊科學的領域中,有許多電腦科學家指出**資訊科學的本質就是計算**。

電腦的計算包含四則運算、比對、搜尋、配對、篩選等不同的處理,當我們要利用電腦的資源來協助研究的進行或解決特定的問題時,必須設計一套可讓電腦遵循的程序或步驟,即演算法(algorithm),才能讓電腦成為運算達人。

各行各業,有 我就不累!

1-1.2 資訊科學的創新貢獻

資訊科學的發展,歷經許多創新與突破,帶動了資訊科技產業的蓬勃發展。以下介紹 平行處理、電腦網路、人工智慧、資料庫、資料探勘、數位典藏等資訊科技相關技術的發 展及其影響。

平行處理

平行處理(parallel processing)技術是同時使用多個CPU來執行一個工作,使需 要大量運算的工作(如軍事、氣候、物理的運算)可以縮短處理時間。

在大型研究室中,常備有裝設多顆CPU的「超級電腦」(圖1-1),這種電腦常會利 用平行處理的技術來加快電腦運算能力。例如2010年美國模擬宇宙誕生時的天文現象, 若使用一般電腦需費時數月,但使用超級電腦只需要數天即可完成整。

(http://www.itmweb.com/)

大學指考的作文,若只由一位老師 進行閱卷工作,需耗費相當長的時 間才能完成,若集合多位老師分工 批改,即可縮短時間,平行處理的 概念就類似這樣的作業方式。

電腦網路

電腦網路(computer network)是將分散在各地的電腦系統連接在一起,使網路上 的電腦能互相傳遞資料,以達到訊息交換及資源共享的目的。1960年代,美國國防部建 立了一個名為ARPANET的網路,ARPANET經過多次的演變與改良,已發展成全球性 的電腦網路-「網際網路」(Internet)。

網際網路的發展,拉近了人與人之間的距離,實現了「地球村」理想,並為人類社 會帶來許多福祉。例如我們生活中的許多服務,都是仰賴電腦網路來實現,如ATM存提 款、瀏覽網路新聞、網路訂票、即時通訊……等。

人工智慧

人工智慧(Artificial Intelligence, AI)主要在研 究如何讓電腦模仿人類的思考模式,使電腦具有學習、 記憶、推理及處理問題的能力。人工智慧仍在發展階 段,常見的人工智慧技術是透過知識庫(Knowledge base),讓電腦在遇到問題時,能根據知識庫的內容來 推行推論, 並作出適當的反應, 再將解決問題的過程加 以記憶,以便下次遇到類似問題時能更有效率地解決。

₩ 小辭典 -知識庫

知識庫是儲存人類知識,及 相關演繹規則與事實(經 驗)的一種資料庫。電腦可 利用知識庫中的內容來進行 推理與問題解決。

人工智慧常見的應用有機器人(robot)、專家系統(expert system)及自然語言處 理(Natural Language Processing)等:

- 機器人:可模擬人類或動物的行為及思考模式,代替人類從事需重複執行或危險 性高的工作,或為人類提供服務。例如家事機器人PR2可聽從人類命令做家事 (圖1-2)。
- 專家系統:透過儲存某些事實與規則,並利用這些規則來推理、判斷以解決問題。 例如具有醫療診斷能力的專家系統,能夠提供使用者猶如專業醫師的診療建議。
- 自然語言處理: 透過電腦來分析及處理人類的自然語言(如英語、中文),讓人 類可使用比較輕鬆與簡單的方式來和電腦溝通。例如iPhone內建的Siri語音助理 能理解人類的口語命令,協助我們進行撥打電話、傳送簡訊、設定行事曆、查詢 氣象、回答問題等工作(圖1-3)。

◆ 圖1-2 家事機器人PR2

TIP

只要手持可攜式設備(如 智慧型手機),即可掃瞄 二維條碼」(QR Code) 連至網站觀看影片。若無 上述設備,同學可參照本 書附錄A中所列的網址來連 結影片。

♪ 圖1-3 Siri語音助理

資料庫

資料庫(database)是一群經過有系統的分類、整理的資料集合,它是電腦資訊系統 管理大量資料經常使用的工具。如果我們未使用資料庫來管理資料,資料的儲存與維護就 會相當不便。例如學校若未使用資料庫來管理學生資料,當學生資料有異動時,相關處室 必須各自更新其維護的學生資料,易產生資料重複儲存、內容不一致、維護困難等問題。

第1章 資訊科學與雷腦發展

資料庫廣泛應用在許多領域,例如 政府的戶政資料、圖書館藏(圖1-4)、 保險投保記錄、病歷資料、商品銷售記 錄等,都嫡合使用資料庫來管理。資料 庫已成為電腦系統管理大量資料不可或 缺的工具。

(http://192.83.186.63/)

圖1-4 資料庫應用實例─國家圖書館館藏查詢系統 ♪

資料探勘

資料探勘(data mining)又稱為資料採礦,顧名思義,是要從大量資料中找出有用的 「金礦」-資訊,這種技術常應用在市場調查、行銷分析研究、經營決策分析等商業領域。

英國TESCO超市曾分析其歷史銷售資料,發現週末購買絨毛玩具的客戶,通常 也會購買乳酪 , 因此該超市每逢週末會將絨毛玩具與乳酪陳列在一起促銷,以 提升銷售業績。

另外,資料探勘也可應用在犯罪防治、生物科技研究、人力資源管理……等不同領 域。例如我國警方曾分析過去台北市的機車竊盜案件資料,找出機車易失竊的地點,作為 警力佈署的依據,以減少機車失竊情形的發生。

數位典藏

數位典藏(digital archive)是將自然、藝術或歷史文物等資料,以數位化的方式儲 存在資料庫中,來達到保存文化資產,及便於瀏覽與查閱的目的。

例 我國故宮博物院、歷史博物館等機構 已將大多數的館藏文物數位化,並在 網站中展示,因此民眾不出門也可在 家瀏覽與欣賞珍貴文物(圖1-5)。

圖1-5 國立故宮博物院網站 €

(http://www.npm.gov.tw/)

1-1.3 資訊科學素養

素養是指「一個人對某一領域所具備的修養與內涵」。**資訊科學素養**就是指一個人對 資訊科學涵蓋的範圍及其應用具有基本的認識,並能善用資訊科技來協助處理或解決問題 的能力;例如能夠結合相關軟、硬體設備處理或分析資料;能夠利用電腦網路進行資料搜 尋與訊息交換等。

在現代社會中,資訊科技的應用已深入到各行各業,並與我們日常生活、課業學習及職場工作等活動密切相關(圖1-6),不論是學生、上班族或是銀髮族等都會接觸到許多資訊科技的應用,因此具備良好的資訊科學素養,對現代公民相當地重要。

節練習

- _1. 美國麻省理工學院研發了一款名為「Nexi」的機器人,它擁有應變及學習的能力,還具有 社交知識,並能作出各種豐富表情,例如高興、難過、生氣、疑惑等。請問這款機器人 最可能屬於下列哪一個資訊科學研究的領域? (A)平行處理 (B)數位典藏 (C)人工智慧 (D)資料庫。
- 2. 請同學假想自己未來可能從事的工作類型,並在搜尋引擎輸入關鍵字 "就業指南e網",連上 『就業指南e網』網站,來閱讀「職業指南」,以瞭解該工作類型可能需要具備的電腦技能。

第1章 資訊科學與雷腦發展

1-2 電腦發展的歷史

電腦硬體的發展 電腦軟體的發展

電腦發展至今已超過五十年,隨著軟、硬體技術的不斷進步,電腦的使用逐漸普及至 各行各業,以及個人與家庭等不同領域。以下讓我們一起回顧早期的計算工具及電腦發展 的歷史。

1642 1823 1887 1937

1642 Pascaline

法國數學家巴斯卡(Blaise Pascal)發明了機械式計算器-Pascaline,它具有加、减法的功 能,是最早的機械式計算器。

(http://www.computerhistory.org/)

巴斯卡 (1623~1662)

巴斯卡是17世紀知名的數學家, 他在19歲時發明了Pascaline計算器 用來減輕他父親在稅務計算工作 的繁重負擔。

1887 打孔卡片處理機

何樂禮 (Herman Hollerith) 教 授發明可讀取打孔卡片的處 理機,它使美國1890年的人 口普查工作,從8年縮短成6 调, 證明了機器代替人工的 可行性。

(http://upload.wikimedia.org/)

1937 ABC

美國阿坦那索夫 (John V. Atanasoff)博士使用真空管 (vacuum tube)設計出第一 部電腦-ABC,是日後電腦 發展的基礎。

(http://www.computerhistory.org/)

1823 差分機

英國數學家巴貝奇 (Charles Babbage)提出了具有算術四則運算 功能的差分機;之後又提出了能夠解決更多數學問題的分析機, 此機器的構想被後人視爲最早的電腦雛型。

巴貝奇 (1791~1871)

巴貝奇在數學與科學都有極佳的 天賦,雖然終其一生未能將分析 機的設計實現出來,但他提出的 構想開啟了電腦的發展, 因此被 後人譽爲電腦之父。

愛達(1815~1852)

愛達 (Augusta Ada Byron) 是英國詩人拜倫的女兒,她 與巴貝奇一起研究用來操控 分析機的指令,被後人譽為 第一位程式設計師。

(http://www.computerhistory.org/)

第一代電腦 (使用真空管) 1946~1958

第二代電腦 (使用電晶體) 1959~1963

946 194

1959

1946 ENIAC

美國毛琪雷(John W. Mauchly)博士與艾克特(J. Presper Eckert),使用真空管設計出第一部通用型電腦-ENIAC,此部電腦為「第一代電腦」的代表作。

(http://www.computerhistory.org/)

1947 電晶體

美國貝爾實驗室(Bell Labs) 發明電晶體(transistor)。

1958 積體電路

德州儀器公司發明<mark>積體電路</mark> (Integrated Circuit, IC)。

1946 內儲程式

美國數學家馮紐曼(John Von Neumann)提出內儲程式 (stored program)的概念,爲現代電腦架構的雛型; 第一部內儲程式電腦-EDSAC於1949年誕生。

(http://www.computerhistory.org/)

馮紐曼(1903~1957)

馮紐曼出生於匈牙利的首都布達佩斯,從小擁有超強的記憶力,6歲時就能心算8位數的除法,是一位罕見的數學天才。他在電腦、物理等領域都有相當傑出的貢獻。

1959 COBOL語言

美國霍普(Grace Murray Hopper)博士發明了 COBOL語言,適合用來處 理大量的商業資料及製作 各種商業報表。

1959 IBM 1620

IBM公司推出使用電晶體 爲主要元件的通用型電 腦-IBM 1620,可應用在 學校、小型企業等方面。

(http://www.computerhistory.org/)

1980

1992

第三代電腦 (使用IC) 1964~1970

1965

第四代電腦 (使用VLSI) 1971~現今

1969 1971 1972

電腦硬體的發展電腦軟體的發展

1965 Basic語言

美國肯曼尼 (John Kemeny) 博士發明了Basic語言,特別適合初學者學習。

1969 UNIX

貝爾實驗室開發出UNIX作業系統,Linux、FreeBSD等都是以UNIX為基礎所發展出來的作業系統。

1971 Pascal語言

瑞士維爾特(Niklaus Wirth) 教授發明了Pascal語言,特別 適合教學使用。

1975

1971 VLSI

英特爾公司推出第一片以超大型積體電路(Very Large Scale Integration, VLSI)製成的微處理器Intel 4004。

1972 C語言

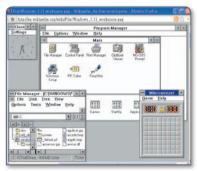
貝爾實驗室的科學家里奇 (Dennis Ritchie)發明了C語 言。

1975 Altair

MITS公司推出第1部個人電腦-Altair,帶動了個人電腦的蓬勃發展。

(http://www.microsoft.com/)

1980 第1顆硬碟


Seagate公司推出第1顆硬碟,容量為5MB。

(http://www.computerhistory.org/)

1992 Windows 3.1

微軟公司推出Windows 3.1 視窗作業環境,帶動了視 窗型作業系統的發展。

(http://en.wikipedia.org/)

比爾蓋茲(1955~)

比爾蓋茲 (Bill Gates) 出生於美國西雅圖,13歲時就開始學習程式設計。1975年與友人創立了現今的軟體王國一微軟公司。

1993 Office

微軟公司推出Office套裝軟體,是現今使用率最普及的辦公室軟體。

2001 iPod

蘋果公司推出iPod音樂播放器,其時尚的外觀及簡易的操控方式,廣受大衆喜愛。

(http://www.apple.com/tw/)

賈伯斯 (1955 ~ 2011)

賈伯斯(Steve Jobs)出生於 美國舊金山,21歲時與友人創 立蘋果公司。該公司推出的麥 金塔電腦、iPod、iPhone等產 品,受到全球消費者的喜愛。

2005 雙核心處理器

英特爾公司推出雙核心處理器(dual-core),大幅提昇了處理器的效能,帶動了多核心技術的發展。

2006 Wii

微軟、新力、任天堂公司分別推出了Xbox 360、PS3、Wii等遊戲機,其中Wii的創新操控方式,徹底改變了傳統遊戲機的設計概念。

2006 藍光光碟

以Sony公司爲首開發的大容量 光碟格式(約25~125GB),可 用來儲存高畫質電影,帶動了 高畫質電視與播放器的發展。

2007 OLPC

美國麻省理工學院提出的OLPC(One Laptop Per Child) 百元電腦計畫,催生了輕省筆電(Netbook)的問世。

輕省筆電(又稱小筆電)的效 能較一般筆電低,通常只適用 在網頁瀏覽、基本文書處理等 方面,但因體積小、價格低, 也受到許多消費者歡迎。

資訊科學與電腦發展 第1章

電腦硬體的發展 電腦軟體的發展

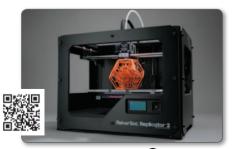
2008 2015 2009 2010 2012 2013

2008 Android

開放原始碼的作業系統, 主要應用在智慧型手機、 平板電腦上。目前許多智 慧型手機,都採用Android 作業系統。

2009 Windows 7

第一款支援多點觸控技術 的個人電腦作業系統 註, 使用者不需使用鍵盤、滑 鼠,即可以觸控方式操控 電腦。


2010 iPad平板雷腦

是一種輕巧、攜帶方便的個人電 腦,主要用於影音多媒體娛樂。 2010年蘋果公司推出iPad後,掀 起平板電腦的「潮流」,也帶動 電子書、App軟體產業的發展。

2012 3D列印技術

3D Systems公司推出第一 台適合家庭用的3D印表機 「Cube」,自此3D列印的應用 開始蓬勃發展。3D列印是一種 快速成型技術,它的原理是將 粉末狀的塑膠或金屬等材料, 依照設計圖一層一層列印出 來,堆疊成「立體」模型。這 種技術使製作實體產品變得更 快速簡單,預期將會對生產工 藝帶來重大的變革。

(i) Creative Tools

2013 穿戴式裝置

智慧型眼鏡、智慧型手錶在 2013年上市,個人電腦產業進 入更多元化的時代。

(http://techau.com.au/)

TIP

只要手持可攜式設備(如 智慧型手機),即可掃瞄 「二維條碼」(QR Code) 連至網站觀看影片。

2015 頭戴式VR裝置

VR(虛擬實境)技術有很大 的進展,許多廠商(如Sony、 hTC、Samsung、Google)於 2015年生產、販售頭戴式VR裝 置,使用者只要戴上VR裝置, 就可以看到逼真的畫面,體驗 身歷其境的感受。

(i) Jorge Figueroa

資訊新趨勢-巨量資料(Big Data)

我們每天上網打卡、按讚、下單購物、分享照片,這些動作,都產生了許許多多的資料,以Facebook網站爲例,每天會增加100TB的資料。若將全球的數位資料彙集,那將是非常龐大的資料,大到難以用一般的資料存取方式儲存,或用一般方式分析處理,這種龐大的資料,泛稱爲巨量資料(Big Data)。

巨量資料有什麼用處呢?事實上,藉由分析巨量資料,我們可以得到許多有價值的情報,目前已有許多產業藉由分析巨量資料,取得有價值資訊並有效應用,以下列舉2個成功案例:

例1 美國的電子商務龍頭亞馬遜公司,藉由分析使用者的購買記錄,以及在社群網站中的發文,來分析使用者對產品的喜好與評價,並依此建立了精準度極高的產品推薦系統(圖1-7),消費者有1/3機率購買系統針對個別消費者所推薦的商品。

系統分析出購買地毯清潔機的 顧客,通常會買地毯清潔劑, 所以系統自動推薦清潔商品

○ 圖1-7 亞馬遜購物網站

(http://www.amazon.com/)

例2 Google地圖利用全球上億名用戶即時回傳的GPS訊號資料,來計算出車輛的移動速度,以標示出每條道路的交通動態(圖1-8)。此外,Google地圖還可以根據大量的歷史資料,來計算出從地點A到地點B所需花用的交通時間,並推薦合適的大眾交通工具及路線,是許多旅客愛用的工具。

紅色代表擁塞,綠色代表暢通。從地圖即可得知台北和新竹交流道附近最擁塞

◆ 圖1-8 Google即時路況

(https://www.google.com.tw/)

我們的生活已有越來越多有關巨量資料的應用,這些應用給人們帶來了許多好處與便利,但巨量資料的蒐集,也帶來侵害隱私的疑慮。要如何在科技發展與使用者權益中取得平衡,將是巨量資料分析的挑戰之一。

●選擇題●

1.	國內研發了一套名爲「作文評分系統」的軟體,只要將作文輸入至電腦中,該軟體就會自動評測出分數,以作爲閱卷老師的參考。請問這套軟體,最可能是使用了下列哪一項技術? (A)全球衛星定位系統 (B)電腦輔助軟體工程 (C)專家系統 (D)語言翻譯系統。
2.	幫助阿姆斯壯登上月球的幕後功臣,是一部由IBM公司所研發的電腦,這部電腦在電腦發展的世代中,是歸屬爲第三代電腦。請問這台電腦最可能是使用下列哪一種電子元件? (A)電晶體 (B)真空管 (C)超大型積體電路 (D)積體電路。
3.	世界第一台電腦 $-$ ABC $+$ 是以下列哪一種電子元件所製造而成 $+$ (A) 真空管 (B) 電晶體 (C) 積體電路 (D)超大型積體電路。
4.	VLSI為下列哪一個電子元件的簡稱? (A)超大型積體電路 (B)積體電路 (C)電晶體 (D)真空管。
5.	下列電子元件 a.電晶體 b.超大型積體電路 c.積體電路 d.真空管,若依據電腦發展的演進過程排列,其正確的排序為: (A)dcab (B)dacb (C)abcd (D)bcda。

●多元練習題▶

1.	請依照以了	下的敘述,	在空格中塡入	、符合敘述的資訊科技代號	0
----	-------	-------	--------	--------------	---

- a. 數位典藏 b. 資料探勘 c. 平行處理 d. 機器人
- (1) 從現成的資料庫中擷取並解析歷史資料,以挖掘資料中所蘊含的重要資訊。
- ____ (2) 可模擬人類或動物行爲及思考模式,以代替人類進行反覆或是危險性高的工作。
- ____ (3) 可將歷史文物、藝術珍品等,進行數位化以便保存及分享。
- (4) 可讓多個CPU同時執行一個工作或程式,以加快運算速度。

2. 請將以下的人名與正確的事蹟連接起來。

人 名 事 蹟

- A. 巴斯卡
- B. 巴貝奇
- C. 愛達
- D. 毛琪雷
- E. 馮紐曼

- 1. 提出內儲程式的概念
- 2. ENIAC的設計者
- 3. 第一位程式設計師
- 4. Pascaline的設計者
- 5. 差分機的設計者